9 research outputs found

    Diameter Perfect Lee Codes

    Full text link
    Lee codes have been intensively studied for more than 40 years. Interest in these codes has been triggered by the Golomb-Welch conjecture on the existence of the perfect error-correcting Lee codes. In this paper we deal with the existence and enumeration of diameter perfect Lee codes. As main results we determine all qq for which there exists a linear diameter-4 perfect Lee code of word length nn over Zq,Z_{q}, and prove that for each n≥3n\geq 3 there are uncountable many diameter-4 perfect Lee codes of word length nn over Z.Z. This is in a strict contrast with perfect error-correcting Lee codes of word length nn over Z Z\,\ as there is a unique such code for n=3,n=3, and its is conjectured that this is always the case when 2n+12n+1 is a prime. We produce diameter perfect Lee codes by an algebraic construction that is based on a group homomorphism. This will allow us to design an efficient algorithm for their decoding. We hope that this construction will turn out to be useful far beyond the scope of this paper

    Equivalent instances of the simple plant location problem

    Get PDF
    AbstractIn this paper we deal with a pseudo-Boolean representation of the simple plant location problem. We define instances of this problem that are equivalent, in the sense that each feasible solution has the same goal function value in all such instances. We further define a collection of polytopes whose union describes the set of instances equivalent to a given instance. We use the concept of equivalence to develop a method by which we can extend the set of instances that we can solve using our knowledge of polynomially solvable special cases

    Data aggregation for p-median problems

    Get PDF
    In this paper, we use a pseudo-Boolean formulation of the p-median problem and using data aggregation, provide a compact representation of p-median problem instances. We provide computational results to demonstrate this compactification in benchmark instances. We then use our representation to explain why some p-median problem instances are more difficult to solve to optimality than other instances of the same size. We also derive a preprocessing rule based on our formulation, and describe equivalent p-median problem instances, which are identical sized instances which are guaranteed to have identical optimal solutions

    Edge-disjoint Hamiltonian cycles in two-dimensional torus

    Get PDF
    The torus is one of the popular topologies for the interconnecting processors to build high-performance multicomputers. This paper presents methods to generate edge-disjoint Hamiltonian cycles in 2D tori
    corecore